トランジスタの動作点とは?求め方、決め方を解説

動作点

トランジスタの動作点とは、ある入力バイアス条件におけるコレクタ-エミッタ間電圧:VCEと、コレクタ電流:ICで決まる点です。
VCE-IC特性と負荷線が交わる点が動作点になります。

本稿では、負荷線を用いた動作点の求め方と、エミッタ接地増幅回路の動作点の決め方について解説していきます。

負荷線とは

下図のエミッタ接地回路を考えます。

エミッタ接地回路

負荷線とは、負荷に流れる電流(=コレクタ電流)とVCの関係を表した直線です。
横軸をVC、縦軸をICとしてグラフに表すとこのようになります。

トランジスタの負荷線

飽和電圧を無視すれば、コレクタ電流:ICはVCが0Vの時に最大となり、IC = VCC / RLとなります。
また、VC = VCCの時に0Aとなります。

トランジスタの飽和領域とは?飽和する原理を解説

動作点の求め方

VCC=10V、RL=100Ωの場合の負荷線をトランジスタのVCE-IC特性に重ねて描きます。

トランジスタの動作点

負荷線とVCE-IC特性が交わる点が動作点です。

例えば、IB=1mAの場合の動作点はVC=5V、IC=50mAであることが分かります。

エミッタ接地増幅回路の動作点を決める手順

実際にエミッタ接地増幅回路の動作点を決める手順を解説していきます。

エミッタ接地回路

出力電圧の振幅をできるだけ大きく取るため、通常はVCの電圧をVCCの半分、つまり5Vとします。

RLが100Ωなので、IC=50mAとなります。
VC=5V、IC=50mAの交点が動作点となります。

エミッタ接地回路の動作点

VBE-IC特性から、IC=50mAとなるVBEを求めると824mVとなります。
これが入力のバイアス電圧になります。

VBE-IC特性

エミッタ接地回路のベースに824mVのバイアスをかけて±20mVのサイン波を入力してみます。

エミッタ接地増幅回路

シミュレーション結果はこのようになります。

増幅波形

出力(VC)の電圧は、5Vを中心に±1.45Vの振幅を持っています。
したがって増幅率は、1.45V / 20mV = 72.5倍となります。

この記事のキーワード

関連記事
能動負荷(アクティブ・ロード)とは?回路と特性について解…

能動負荷とは、電流が一定である非線形抵抗回路で、能動素子(トランジスタ)を使って構成されます。 アクティブ・ロードとも呼ばれます。 抵抗のような受動素子(パッシブ・ロード)との大きな違いは、インピーダンスが非常に大きい(理想的には無限大)であることです。 代表的な回路例としては定…

トライアックの動作原理と使い方

トライアックとは、ゲート電圧をトリガーとして順方向・逆方向どちらにも導通させることができる半導体スイッチです。 サイリスタを2つ逆方向に並列接続した構造で、直流だけでなく交流も扱えるようになっています。 ゼネラル・エレクトリック社が開発し、Triode AC Switchを略して…

カレントミラー回路の動作原理と設計計算の方法

カレントミラーとは、電流源で作った基準電流をコピー(複製)する回路です。 電流を鏡のように写すことからその名が付けられています。 本稿では、カレントミラーの原理と、ミラー電流の計算方法について解説します。 INDEXカレントミラーの原理出力電流を2倍にする方法1.並列接続する2.…

インバーテッドダーリントン接続の特徴と発振対策

インバーテッドダーリントン接続とは、NPNトランジスタとPNPトランジスタ組み合わせて構成した高hFEの増幅回路です。 NPN-PNP接続はNPNトランジスタと等価、PNP-NPN接続のものはPNPトランジスタと等価となります。 PNP-NPN接続のものは疑似PNPと呼ばれること…

差動増幅回路の動作原理

差動増幅回路とは、2つの入力の差電圧を増幅する回路です。 差動増幅器とも呼ばれます。 オペアンプを使った回路では、減算回路とも言われます。 本稿では、トランジスタを使った差動増幅回路とオペアンプを使った回路について、わかりやすく解説していきます。 INDEXトランジスタを使った差…