能動負荷(アクティブ・ロード)とは?回路と特性について解説

能動負荷

能動負荷とは、電流が一定である非線形抵抗回路で、能動素子(トランジスタ)を使って構成されます。
アクティブ・ロードとも呼ばれます。
抵抗のような受動素子(パッシブ・ロード)との大きな違いは、インピーダンスが非常に大きい(理想的には無限大)であることです。

代表的な回路例としては定電流源やカレントミラーが挙げられます。

本稿では、能動負荷の特性と使用するメリットなどを解説していきます。

代表的な回路

能動負荷の代表的な回路には、次のような定電流源やカレントミラーがあります。

カレントミラーと電流源回路

アクティブ・ロードの特性

エミッタ接地回路

左が抵抗負荷で右が能動負荷です。
横軸をベース電流として、それぞれのコレクタ電流と出力電圧の関係を見てみましょう。

抵抗負荷と能動負荷の違い

抵抗負荷の場合、コレクタ電流に比例して出力電圧:Vo1が低下していきますが、能動負荷の場合はコレクタ電流が能動負荷の電流に達したところで一気に電圧が低下します。

したがって、能動負荷はコンパレータの出力段などに使うことで、急峻な電圧の切り替わりを得られるというメリットがあります。

コンパレータの設計方法

増幅率の違い

能動負荷はインピーダンスが非常に高いため、増幅回路で使うことで増幅率を高くすることができます。

エミッタ接地の場合で考えると、増幅率は

増幅率

で計算できます。
Gmはトランジスタのトランスコンダクタンス、ZLが負荷のインピーダンスです。

インピーダンスが高いほど増幅率が高くなることが分かります。

差動増幅回路の出力にカレントミラー(アクティブ・ロード)が用いられることが多いのは、増幅率を大きくするためです。

差動増幅回路の動作原理

動画で電子回路の基礎を学ぶ

Analogistaでは、電子回路の基礎から学習できるセミナー動画を作成しました。

電子の動きをアニメーションを使って解説したり、シミュレーションを使って回路動作を説明し、直感的に理解しやすい内容としています。

これから電子回路を学ぶ必要がある社会人の方、趣味で電子工作を始めたい方におすすめの講座になっています。

電子回路を動画で学ぶ

【内容】

  • 電気回路の基本法則
  • 回路シミュレータの使い方
  • コンデンサ・コイルとインピーダンス
  • フィルタ回路
  • 半導体部品の基礎
  • オペアンプの基礎
関連記事
コレクタ接地(エミッタフォロワ)回路の特徴と使い方

コレクタ接地回路とは、バイポーラトランジスタのコレクタを入出力共通端子とし、ベースを入力、エミッタを出力として使う回路です。 電流増幅率が高く、電圧増幅作用がない(1倍)という特徴を持ちます。 出力(エミッタ)が入力電圧に追従することから、エミッタフォロワとも呼ばれます。 本稿で…

レベルシフト回路の必要性と動作原理

レベルシフト回路とは、クロックなどのデジタル信号のHiレベルを変換する回路です。 信号の出力側デバイスの電源電圧と受け側の電源電圧が異なる場合に、Hiレベルと電源電圧を合わせるために用いられます。 本稿では、レベルシフト回路の用途と回路例について解説していきます。 INDEXレベ…

カレントミラー回路の動作原理と設計計算の方法

カレントミラーとは、電流源で作った基準電流をコピー(複製)する回路です。 電流を鏡のように写すことからその名が付けられています。 本稿では、カレントミラーの原理と、ミラー電流の計算方法について解説します。 INDEXカレントミラーの原理出力電流を2倍にする方法1.並列接続する2.…

差動増幅回路の動作原理

差動増幅回路とは、2つの入力の差電圧を増幅する回路です。 差動増幅器とも呼ばれます。 オペアンプを使った回路では、減算回路とも言われます。 本稿では、トランジスタを使った差動増幅回路とオペアンプを使った回路について、わかりやすく解説していきます。 INDEXトランジスタを使った差…

電流帰還バイアス回路の原理と設計計算の方法

電流帰還バイアス回路とは、エミッタ抵抗によって負帰還(フィードバック)を構成し、ベース電流(バイアス電流)を制御することができる増幅回路です。 エミッタ接地回路と比べ電圧利得は下がるが、周波数特性、ノイズ、歪みが改善し、温度変化によるばらつきも抑えられます。 エミッタ接地回路の特…