能動負荷(アクティブ・ロード)とは?回路と特性について解説

能動負荷

能動負荷とは、電流が一定である非線形抵抗回路で、能動素子(トランジスタ)を使って構成されます。
アクティブ・ロードとも呼ばれます。
抵抗のような受動素子(パッシブ・ロード)との大きな違いは、インピーダンスが非常に大きい(理想的には無限大)であることです。

代表的な回路例としては定電流源やカレントミラーが挙げられます。

本稿では、能動負荷の特性と使用するメリットなどを解説していきます。

代表的な回路

能動負荷の代表的な回路には、次のような定電流源やカレントミラーがあります。

カレントミラーと電流源回路

アクティブ・ロードの特性

エミッタ接地回路

左が抵抗負荷で右が能動負荷です。
横軸をベース電流として、それぞれのコレクタ電流と出力電圧の関係を見てみましょう。

抵抗負荷と能動負荷の違い

抵抗負荷の場合、コレクタ電流に比例して出力電圧:Vo1が低下していきますが、能動負荷の場合はコレクタ電流が能動負荷の電流に達したところで一気に電圧が低下します。

したがって、能動負荷はコンパレータの出力段などに使うことで、急峻な電圧の切り替わりを得られるというメリットがあります。

コンパレータの設計方法

増幅率の違い

能動負荷はインピーダンスが非常に高いため、増幅回路で使うことで増幅率を高くすることができます。

エミッタ接地の場合で考えると、増幅率は

増幅率

で計算できます。
Gmはトランジスタのトランスコンダクタンス、ZLが負荷のインピーダンスです。

インピーダンスが高いほど増幅率が高くなることが分かります。

差動増幅回路の出力にカレントミラー(アクティブ・ロード)が用いられることが多いのは、増幅率を大きくするためです。

差動増幅回路の動作原理

動画で電子回路の基礎を学ぶ

Analogistaでは、電子回路の基礎から学習できるセミナー動画を作成しました。

電子の動きをアニメーションを使って解説したり、シミュレーションを使って回路動作を説明し、直感的に理解しやすい内容としています。

これから電子回路を学ぶ必要がある社会人の方、趣味で電子工作を始めたい方におすすめの講座になっています。

電子回路を動画で学ぶ

【内容】

  • 電気回路の基本法則
  • 回路シミュレータの使い方
  • コンデンサ・コイルとインピーダンス
  • フィルタ回路
  • 半導体部品の基礎
  • オペアンプの基礎
関連記事
エミッタ接地回路の特徴と使い方

エミッタ接地回路とは、バイポーラトランジスタのエミッタを入出力共通端子とし、ベースを入力、コレクタを出力として使う増幅回路です。 エミッタ共通回路、エミッタコモン回路とも呼ばれます。 本稿では、エミッタ接地回路の特徴や使い方、計算方法について解説していきます。 INDEX特徴動作…

インバーテッドダーリントン接続の特徴と発振対策

インバーテッドダーリントン接続とは、NPNトランジスタとPNPトランジスタ組み合わせて構成した高hFEの増幅回路です。 NPN-PNP接続はNPNトランジスタと等価、PNP-NPN接続のものはPNPトランジスタと等価となります。 PNP-NPN接続のものは疑似PNPと呼ばれること…

ベース接地回路の特徴と用途

ベース接地回路とは、バイポーラトランジスタのベースを入出力共通端子とし、エミッタを入力、コレクタを出力として使う回路です。 電圧増幅率が高く、電流増幅作用がない(1倍)という特徴を持ちます。 ベース共通回路、ベースコモン回路とも呼ばれます。 INDEXベース接地回路の特徴ベース接…

レベルシフト回路の必要性と動作原理

レベルシフト回路とは、クロックなどのデジタル信号のHiレベルを変換する回路です。 信号の出力側デバイスの電源電圧と受け側の電源電圧が異なる場合に、Hiレベルと電源電圧を合わせるために用いられます。 本稿では、レベルシフト回路の用途と回路例について解説していきます。 INDEXレベ…

D級アンプの回路と動作原理

D級アンプとは、スイッチング動作により矩形波を生成し、入力信号レベルに応じてパルス幅を変調して出力する方式です。 スイッチング動作なので効率が良く、90%を超える高効率も可能です。 デジタルアンプ、スイッチングアンプという呼び方もされます。 A級、B級、C級、D級アンプの違い I…