ベース接地回路の特徴と用途

ベース接地回路

ベース接地回路とは、バイポーラトランジスタのベースを入出力共通端子とし、エミッタを入力、コレクタを出力として使う回路です。
電圧増幅率が高く、電流増幅作用がない(1倍)という特徴を持ちます。
ベース共通回路、ベースコモン回路とも呼ばれます。

ベース接地回路の特徴

ベース接地回路の入出力の特徴をまとめると以下のようになります。

入力インピーダンス 低い
出力インピーダンス 高い
電圧増幅率 高い
電流増幅率 1倍
出力の位相 同相
高周波特性 良い

入力インピーダンスが低く、出力インピーダンスが高いので、電流バッファ回路として使われます。

ベース接地回路の動作

ベース接地回路の基本の型を示します。

ベース接地回路

動作波形は下図のようになります。

ベース接地動作波形

入力波形:±10mV / 1kHzのサイン波が、33.4倍の振幅に増幅して出力されています。

増幅率の計算

ベース電圧が固定されているので、エミッタ電圧の変動量がそのままVBEの変動量になります。
したがって、コレクタ電流の変動量は、

コレクタ電流計算

で計算できますので、電圧増幅率は次の式で求めることができます。

ベース接地の増幅率計算

今回の回路でGmは、VBE-IC特性より、15.2mA/Vとなります。

VBE-IC特性

よって増幅率は、15.2m × 2.2k = 33.4倍となり、シミュレーション結果と一致します。

ベース接地回路の用途

ベース接地が使われる代表的な回路は、カスコード接続です。
下図のように、エミッタ接地回路の上にベース接地回路が縦積みされた構成となります。

カスコード接続

エミッタ接地単独よりも応答性、周波数特性が改善します。

応答速度の改善効果

ベース接地を用いない、エミッタ接地だけの場合の応答性を確認します。

エミッタ接地の応答性

エミッタ接地の場合、ベース-コレクタ間に存在する寄生容量にミラー効果が作用するため、増幅度倍の容量が作用するため、応答性が悪化します。

ベース接地を追加したカスコード接続にすると、エミッタ接地のコレクタ側の電圧が低い電圧でクランプされるため、ミラー効果の影響を抑えることができます。

ベース接地の応答性

周波数特性

ベース接地の有無で周波数特性を確認してみました。

ベース接地の周波数特性

カットオフ周波数が高周波側に伸びているのが分かります。
ベース接地回路ありの方のゲインが、4MHz付近から急峻に低下しているのは、ベース接地用トランジスタによって2ndポールができるためです。

この記事のキーワード

関連記事
差動増幅回路の動作原理

差動増幅回路とは、2つの入力の差電圧を増幅する回路です。 差動増幅器とも呼ばれます。 本稿では、トランジスタを使った差動増幅回路とオペアンプを使った回路について、わかりやすく解説していきます。 INDEXトランジスタを使った差動増幅回路動作原理カレントミラーを使った差動対オペアン…

トライアックの動作原理と使い方

トライアックとは、ゲート電圧をトリガーとして順方向・逆方向どちらにも導通させることができる半導体スイッチです。 サイリスタを2つ逆方向に並列接続した構造で、直流だけでなく交流も扱えるようになっています。 ゼネラル・エレクトリック社が開発し、Triode AC Switchを略して…

エミッタ接地回路の特徴と使い方

エミッタ接地回路とは、バイポーラトランジスタのエミッタを入出力共通端子とし、ベースを入力、コレクタを出力として使う増幅回路です。 エミッタ共通回路、エミッタコモン回路とも呼ばれます。 本稿では、エミッタ接地回路の特徴や使い方、計算方法について解説していきます。 INDEX特徴動作…

オペアンプ回路の基礎と設計計算の方法

オペアンプ(OPamp)とは、微小な電圧信号を増幅して出力することができる回路、またはICのことです。 反転入力端子と非反転入力端子の2つの入力端子を持ち、その2つの入力電圧の差を増幅して出力することができます。 通常、帰還(フィードバック)をかけて使い、増幅回路、微分回路、積分…

コレクタ接地(エミッタフォロワ)回路の特徴と使い方

コレクタ接地回路とは、バイポーラトランジスタのコレクタを入出力共通端子とし、ベースを入力、エミッタを出力として使う回路です。 電流増幅率が高く、電圧増幅作用がない(1倍)という特徴を持ちます。 出力(エミッタ)が入力電圧に追従することから、エミッタフォロワとも呼ばれます。 本稿で…