負性抵抗の原理と回路例

負性抵抗

負性抵抗とは、マイナスの抵抗値を持った素子、または回路で、印加する電圧が大きくなると電流が減少するという特性を持っています。
負性抵抗となる素子としては、トンネルダイオードやサイリスタがありますが、本稿ではオペアンプやトランジスタを使った能動的な回路の動作や用途について解説していきます。

オペアンプを使った負性抵抗回路

下図のようなオペアンプを使った負性抵抗回路を負性インピーダンス変換器といいます。
英語ではNegative Impedance Converterと記載され、NICと略されます。

 負性インピーダンス変換器(NIC)

この回路の入力から見た抵抗Rinを計算します。

バーチャルショートが成立することから、

負性抵抗の計算

よって、電流I1は、

負性抵抗の計算

となり、オペアンプの出力電圧Voutを計算すると、

負性抵抗の計算

となります。
入力に流れる電流Iinは、

負性抵抗の計算

と計算できるので、入力側から見たインピーダンスは、

負性抵抗の計算

で求められ、負の値になっていることが分かります。
ここで、R1=R2とすると、負性抵抗Rinは、

負性抵抗の計算

となり、RFで決まることが分かります。
上記回路ではRF=220Ωなので、負性抵抗は-220Ωとなります。

シミュレーションで特性を確認すると以下のようになります。

負性抵抗の特性

上段の波形が入力電流、下段が入力抵抗(負性抵抗)です。

発振回路への応用

下図のようなLC共振回路を考えます。

共振回路

コンデンサの初期電圧を5V、コイルの初期電流を0Aに設定して過渡解析を実行します。
理想的なLC共振回路では、発振は永遠に継続しますが、実物のコンデンサとコイルは直列抵抗成分を持っているため、抵抗で電力が消費され発振は徐々に減衰していきます。

共振波形

ここに負性抵抗を接続して抵抗成分を打ち消すことで、発振を継続させることができます。

発振回路と負性抵抗
負性抵抗の発振波形

抵抗で失われる電力を負性抵抗が補うイメージです。

負性抵抗は、水晶振動子の発振回路などでも用いられます。

電流帰還時の負性抵抗に注意

電圧クランプ回路などで、消費電流を減らすために出力電流の一部をフィードバックして、出力トランジスタのベースに戻す回路が使われることがあります。

電流帰還クランプ回路

通常、出力電流が増えると出力トランジスタのVBEが低下するため、クランプ電圧は低下していきます。

しかし、基準側のトランジスタのVBEが出力側より極端に大きかったり、レイアウトの不備で基準側トランジスタのエミッタ側に大きな抵抗成分が付いてしまうと、出力電流の増加に伴いクランプ電圧が増大してしまいます。
帰還量が大きすぎると動作が不安定になり、発振に至る場合もあるので注意が必要です。

負性抵抗の特性
動画で電子回路の基礎を学ぶ

Analogistaでは、電子回路の基礎から学習できるセミナー動画を作成しました。

電子の動きをアニメーションを使って解説したり、シミュレーションを使って回路動作を説明し、直感的に理解しやすい内容としています。

これから電子回路を学ぶ必要がある社会人の方、趣味で電子工作を始めたい方におすすめの講座になっています。

電子回路を動画で学ぶ

【内容】

  • 電気回路の基本法則
  • 回路シミュレータの使い方
  • コンデンサ・コイルとインピーダンス
  • フィルタ回路
  • 半導体部品の基礎
  • オペアンプの基礎
関連記事
電流帰還バイアス回路の原理と設計計算の方法

電流帰還バイアス回路とは、エミッタ抵抗によって負帰還(フィードバック)を構成し、ベース電流(バイアス電流)を制御することができる増幅回路です。 エミッタ接地回路と比べ電圧利得は下がるが、周波数特性、ノイズ、歪みが改善し、温度変化によるばらつきも抑えられます。 エミッタ接地回路の特…

インピーダンスとは?わかりやすく解説

インピーダンスとは、交流回路における電流の流れにくさを数値化したもので、電圧と電流の比を表します。 単位はΩで、直流回路の抵抗の考え方を複素数にまで広げたものです。 複素数の概念が出てくることで分かりにくくなってしまいますが、ここではインピーダンスとは何なのか、抵抗との違いは何な…

能動負荷(アクティブ・ロード)とは?回路と特性について解…

能動負荷とは、電流が一定である非線形抵抗回路で、能動素子(トランジスタ)を使って構成されます。 アクティブ・ロードとも呼ばれます。 抵抗のような受動素子(パッシブ・ロード)との大きな違いは、インピーダンスが非常に大きい(理想的には無限大)であることです。 代表的な回路例としては定…

C級アンプの回路図と動作

C級アンプとは、トランジスタを入力信号の半周期以下のサイクルで導通させる方式です。 そのため歪みが大きくなりますが、効率が良く、理論上の最大効率は90%に達します。 歪みが大きいためオーディオでは使われず、高周波回路で使用されます。 A級、B級、C級、D級アンプの違い INDEX…

ダーリントン接続の特徴と用途

ダーリントン接続とは、トランジスタのエミッタをもう一つのトランジスタのベースに接続して使う方法で、このような接続をした回路をダーリントントランジスタと呼びます。 ダーリントントランジスタとして、1つのパッケージ内に統合された製品もあります。 ダーリントン接続は、非常に高い電流増幅…