飽和からの復帰時のレギュレータのオーバーシュートに要注意

電源変動

LDOやDCDCコンバータなどのレギュレータ回路において、入出力飽和状態から復帰の際に大きなオーバーシュートが観測されることがあります。
車載システムでは特にバッテリ電圧の変動幅、スルーレート共に大きくなりますので対策が必要です。

ここでは、電源の飽和復帰時にオーバーシュートが大きくなるメカニズムと対策を紹介していきたいと思います。

レギュレータの飽和とは

降圧レギュレータにおいて、設定した出力電圧より入力電圧が低くなっている状態を飽和状態と呼びます。
出力電圧が設定値より低いためLDOなら出力トランジスタをフルオンさせる側、DCDCコンバータなら最大DUTY動作の状態になっています。
エラーアンプの出力も振り切っている状態です。

下図はLDOの回路例です。

LDOの回路例

飽和状態から復帰する際にはエラーアンプの出力を制御状態の電圧まで戻す必要があります。
しかし、エラーアンプの出力には位相補償コンデンサが接続されます。
エラーアンプの出力電流は通常数十uA程度ですから、その電流とコンデンサとの時定数で決まる時間分、レギュレータの反応が遅れて大きなオーバーシュートが発生するのです。

飽和復帰時のオーバーシュート

オーバーシュート対策

IC内部でオーバーシュート対策を行うためには、

  • エラーアンプの出力電流を増やす
  • 位相補償コンデンサをできるだけ小さくする
  • エラーアンプの出力Hiレベルをクランプする

などが考えられます。
前述のLDOの回路例ではエラーアンプのHiレベルがVBEでクランプされているため、電圧の戻りが速くなっています。

IC外部での対策としては、

  • 入力にフィルタを入れ変動S/Rを小さくする
  • 出力のパスコン容量を増やす
  • 出力にフィルタを入れる

などが考えられます。

関連記事
シリーズレギュレータの内部回路と動作原理を解説

シリーズレギュレータ(LDO)の基本的な内部回路の紹介と動作原理について解説していきます。 ブロック図と内部回路 シリーズレギュレータの等価回路は下図のようなブロック図で表すことができます。 大まかな構成部品は、 基準電圧源 差動増幅器 位相補償回路 増幅段 パワートランジスタ …

スナバ回路とは?動作原理と定数の決め方を解説

スナバ回路とは、FETスイッチなどの切り替わり時に発生する高周波リンギングを吸収するノイズ対策回路です。 最もよく使われるのが、抵抗とコンデンサで構成されるRCスナバ回路です。 スナバ回路の設計計算は難しく、なんとなくで定数を決めている場合が少なくありません。 ここでは、実際の開…

レギュレータやFETスイッチの逆電圧保護の方法と注意点

レギュレータやFETスイッチなどに逆電圧が掛かると、逆流電流によってボディダイオードが破壊されてしまう場合があるため対策が必要です。 また、出力側から入力側への回り込みによるシステムの不具合が起こる可能性もあるため、逆流防止の必要もあります。 逆電圧が発生するシチュエーションとし…

過電圧保護とは?回路構成と機能を解説

過電圧保護とは、外部からのサージ電圧から内部回路を守るための回路、またはデバイスの異常で出力が過電圧状態になった際に後段デバイスを保護するための機能です。 OVP(Over Voltage Protection)と呼ばれたり、OVLO(Over Voltage Lock Out)…