同期整流DCDCコンバータの動作原理と非同期整流との違い

同期整流回路

同期整流(Synchronous Rectifier)とは、2つのMOSFETを同期させてスイッチングさせることで効率を高める、スイッチングレギュレータの技術の一つです。

非同期整流の場合は片側にダイオードを使うため自動的に(非同期で)回生動作を行いますが、回生側もMOSFETを使う同期整流では、2つのMOSFETが同時にオンしないように同期を取って動作させる必要があります。
ダイオードをMOSFETに置き換えることで、ダイオードのVF分の導通ロスが削減できるため、変換効率が向上します。

>>各メーカーの同期整流ICの性能比較を見る

非同期整流との違い

同期整流と非同期整流の違いをまとめました。

項目 同期整流 非同期整流
変換効率 ×
ノイズ ×
ボトムFETのボディダイオードの逆回復時間中にスパイク電流が発生

基本的にはショットキーダイオードを使うのでスパイク電流は少ない
強制連続モード
軽負荷時の逆電流はボトムFETが吸い込むことができるので強制的に連続モードにすることができる
×
軽負荷時には不連続モードになる
設計難易度 ×
回路規模 ×
コスト ×

同期整流のメリットとデメリット

メリット

  • 高効率
  • 損失・発熱が抑えられる
  • 不連続モードの対策が容易

デメリット

  • ノイズ性能の悪化
  • 設計難易度が高い
  • 回路規模が大きくなる
  • コストアップ

非同期整流と比べ制御が複雑になるため、技術難易度が高くなり、またサイズ、コストが増大してしまいます。
それでも、特に大電流を扱うシステムでは、高効率化というのはデメリットを補って余りあるメリットとなります。

ノイズ性能の悪化については、ボトムFETと並列にショットキーダイオードを追加することで対策することが可能です。

同期整流の回路

同期整流型の降圧DCDCコンバータをLTspiceで組んでみました。

同期整流回路図

上下のスイッチングFETを貫通させないようにするためデッドタイム制御が必要になりますので、非同期整流と比べると制御ロジックがやや複雑になります。

デッドタイムとは両方のFETともオフになる時間のことで、スイッチングのオン・オフの切り替わり時に設けることで貫通を防止します。

LTspiceの回路図は以下よりダウンロードして頂けます。

ダウンロード
同期整流シミュレーション回路(ascファイル)
※上記ファイルをダウンロードした時点で利用規約に同意したものとみなします。

同期整流の動作原理

同期整流では、トップFETとボトムFETを交互にオン/オフさせます。
このとき、上下のFETが同時にオンしている状態にならないようにデッドタイムを設けます。
デッドタイム中はボトムFETのボディダイオードがオンし、回生電流が流れます。

同期整流動作

したがって、デッドタイム中はスイッチング波形のLoレベルが-VFまで落ち込みます。

デッドタイム

スイッチング制御以外の動作メカニズムは非同期整流と同じですので、ここでは割愛します。
以下の記事にてご確認ください。

DCDCコンバータICの内部回路動作をシミュレーション波形を使って解説

貫通電流による破壊や誤動作に注意

同期整流で最も注意しなくてはいけないのが上下のMOSFETの同時オンによって貫通電流が発生することです。
誤動作や、最悪破壊に繋がりますのでICの採用評価の際にもしっかり確認しましょう。

貫通やスパイク電流が発生する原因

1.ノイズ対策が原因

ノイズ対策でMOSFETのゲートラインに抵抗を挿入してスイッチング波形を鈍らせることがあります。
しかし、デッドタイム以上に鈍らせてしまうと、上下のFETが同時にオンしている領域が発生し、貫通電流が流れてしまいます。

貫通電流

2.電源変動や温度変化

定常状態では問題なくても、急峻な入力電源の変動や高温/低温条件でデッドタイムが短くなってしまい貫通してしまうことがあります。
ICの採用評価の際は、さまざまな条件で動作を確認しておく必要があります。

3.セルフターンオン

トップFETがオンしてボトムFETのドレイン電圧が急峻に上昇すると、ボトムFETのドレイン-ゲート間の寄生容量のカップリングによってゲート電圧が持ち上がり、ボトムFETがオンして貫通してしまうことがあります。
特に、ボトムFETのゲートにノイズ対策用の抵抗を入れている場合に起こりやすくなります。

セルフターンオン

4.ボディダイオードの逆回復時間

デッドタイムからトップFETがオンする瞬間にボトムFETへ貫通電流が発生します。
破壊に至ることは少ないですが、電流モードの場合、電流センス波形にスパイクノイズが乗ってしまい誤動作することがあります。

逆回復時間中のスパイクノイズ
※直接ボディダイオードの電流をモニタできないため、FETのドレイン側の電流をモニタしています。

前出のシミュレーション回路でも、ボディダイオードへのスパイク電流が大きかったため、ボトムFETと並列にショットキーダイオードを挿入することで対策しています。
ショットキーダイオードの方が逆回復時間が短いので、スパイク電流を抑えることができます。

関連記事
eFuseとは?

eFuseとは、過電流を検知するとMOSFETをオフして負荷を切断する半導体スイッチICです。 ポリスイッチなどの通常のフューズと置き換えが可能です。 通常のヒューズが負荷切断までに時間がかかるのに対し、eFuseは検知が速く、すぐに切断動作を行えるため、安全性が高いというメリッ…

昇降圧DCDCコンバータの動作原理と回路設計方法

昇降圧コンバータ(バックブーストコンバータ)とは、昇圧動作と降圧動作を自動的に切り替え、入力電圧に依らず一定の電圧を出力する回路方式です。 入力電圧の変動幅が大きいバッテリなどを入力電源とする場合に使用されることが多くなります。 昇圧コンバータの方式には複数ありますが、本稿ではF…

電気回路におけるコイルの動作、役割

電気回路設計を学ぶ上でコイル(インダクタ)の動作は理解が難しいものの1つです。 本稿では、理論的な部分はあまり語らず、回路動作としてコイルがどのような働きをするかという部分に絞ってわかりやすく解説していきます。 INDEXコイルの特徴、特性電流・電圧特性方形波を印加した場合の挙動…

パスコンの役割と容量の決め方

パスコンとは、バイパスコンデンサの略で、電源電圧の安定化と高周波ノイズの吸収といった2つの役割があります。 電源とGND間に接続され、ノイズ電流をGNDにバイパスすることからバイパスコンデンサという名前が付けられています。 デカップリングコンデンサと呼ばれることもあります。 電源…

チャタリングとは?原因と対策方法について

チャタリングとは、主にリレー、スイッチがオンする際に機械的な振動によって短い周期のオン・オフを繰り返すことを言います。 電子回路でも発生し、バッファのHi-Loの切り替わり時に同様の振動を繰り返すことがあります。 本稿では、チャタリングの発生原因と対策、防止回路について解説してい…