インバーテッドダーリントン接続の特徴と発振対策

インバーテッドダーリントン接続

インバーテッドダーリントン接続とは、NPNトランジスタとPNPトランジスタ組み合わせて構成した高hFEの増幅回路です。
NPN-PNP接続はNPNトランジスタと等価、PNP-NPN接続のものはPNPトランジスタと等価となります。
PNP-NPN接続のものは疑似PNPと呼ばれることもあります。

インバーテッドダーリントン

ダーリントン接続の特徴と用途

インバーテッドダーリントンの動作原理

インバーテッドダーリントンの動作原理

NPNトランジスタに入力されたベース電流:IB1が増幅され、IC1=hFE1×IB1の電流がPNPトランジスタのベースから引き込まれます。
この電流がPNPトランジスタでさらに増幅され、

IC2 = IC1 × hFE2 = IB1 × hFE1 × hFE2

の電流がコレクタ側に出力されます。
出力電流はIC2とIE1の合計値ですが、IC2>>IE1なので、出力電流:IOUTは

IOUT ≒ IC2 = IB1 × hFE1 × hFE2

となり、hFE1 × hFE2倍の電流増幅率となることが分かります。

インバーテッドダーリントンのメリットとデメリット

通常のダーリントン接続は、入力電圧が2VBE以上ないと動作できませんでしたが、インバーテッドダーリントンの場合はVBEだけで動作が可能です。

インバーテッドダーリントンの動作電圧

欠点としては発振しやすいことが挙げられます。

インバーテッドダーリントン接続は、負帰還を形成しています。

下図のように入力電圧:VB1が低下すると、Q1のVBEが開くためコレクタ電流が増加し、VB2が上昇します。
VB2が上昇するとQ2のVBEが開くためQ2のコレクタ電流が増加し、Q2のコレクタ電圧=Q1のエミッタ電圧:VE1が下がります。
VE1が下がるとQ1のVBEが低下し、VB2は低下するという動きになります。

インバーテッドダーリントンの負帰還

低周波領域ではこのように負帰還となっているため発振しませんが、高周波領域ではNPNトランジスタのベース-コレクタ間寄生容量によって、正帰還(フィードフォワード)が形成されます。

インバーテッドダーリントンのフィードフォワードループ

このループはRHPゼロを形成します。

RHPゼロ(右半面ゼロ)とは

インバーテッドダーリントン単体で発振することはあまりありませんが、オペアンプやレギュレータ内の増幅段としてインバーテッドダーリントンが使われていると、このRHPゼロの影響で発振することがあります。

インバーテッドダーリントンの発振対策

寄生容量:Cpによってできる正帰還を、PNPトランジスタのベース-コレクタ間容量:C1を追加することで、全体として負帰還に戻し、発振を抑えることができます。

インバーテッドダーリントンの発振対策

C1とCpで2つのフィードフォワードができることで、打ち消すことができるのです。

この記事のキーワード

関連記事
トランジスタの動作点とは?求め方、決め方を解説

トランジスタの動作点とは、ある入力バイアス条件におけるコレクタ-エミッタ間電圧:VCEと、コレクタ電流:ICで決まる点です。 VCE-IC特性と負荷線が交わる点が動作点になります。 本稿では、負荷線を用いた動作点の求め方と、エミッタ接地増幅回路の動作点の決め方について解説していき…

スイッチングレギュレータの位相補償のやり方と位相余裕の計…

スイッチングレギュレータ(DCDCコンバータ)の位相余裕を計算するのはそれほど難しくはありません。 伝達関数を使うので少し取っ付きにくいイメージがありますが、コツさえつかめば簡単です。 計算用のエクセルシートもご用意しましたので、数値を変えながらボーデ線図の変化を確認すればイメー…

オペアンプ回路の基礎と設計計算の方法

オペアンプ(OPamp)とは、微小な電圧信号を増幅して出力することができる回路、またはICのことです。 反転入力端子と非反転入力端子の2つの入力端子を持ち、その2つの入力電圧の差を増幅して出力することができます。 通常、帰還(フィードバック)をかけて使い、増幅回路、微分回路、積分…

LDOの基礎から応用まで全てを解説

本記事では、LDOを使った電源設計ができるようになるために必要な全ての知識を、基礎から応用まで分かりやすく解説していきます。 INDEXLDOとは?シリーズレギュレータとの違いスイッチングレギュレータとの違い仕組みと動作原理データシートの見方出力電圧範囲最大出力電流電圧精度出力電…

電流帰還バイアス回路の原理と設計計算の方法

電流帰還バイアス回路とは、エミッタ抵抗によって負帰還(フィードバック)を構成し、ベース電流(バイアス電流)を制御することができる増幅回路です。 エミッタ接地回路と比べ電圧利得は下がるが、周波数特性、ノイズ、歪みが改善し、温度変化によるばらつきも抑えられます。 エミッタ接地回路の特…