インバーテッドダーリントン接続の特徴と発振対策

インバーテッドダーリントン接続

インバーテッドダーリントン接続とは、NPNトランジスタとPNPトランジスタ組み合わせて構成した高hFEの増幅回路です。
NPN-PNP接続はNPNトランジスタと等価、PNP-NPN接続のものはPNPトランジスタと等価となります。
PNP-NPN接続のものは疑似PNPと呼ばれることもあります。

インバーテッドダーリントン

ダーリントン接続の特徴と用途

インバーテッドダーリントンの動作原理

インバーテッドダーリントンの動作原理

NPNトランジスタに入力されたベース電流:IB1が増幅され、IC1=hFE1×IB1の電流がPNPトランジスタのベースから引き込まれます。
この電流がPNPトランジスタでさらに増幅され、

IC2 = IC1 × hFE2 = IB1 × hFE1 × hFE2

の電流がコレクタ側に出力されます。
出力電流はIC2とIE1の合計値ですが、IC2>>IE1なので、出力電流:IOUTは

IOUT ≒ IC2 = IB1 × hFE1 × hFE2

となり、hFE1 × hFE2倍の電流増幅率となることが分かります。

インバーテッドダーリントンのメリットとデメリット

通常のダーリントン接続は、入力電圧が2VBE以上ないと動作できませんでしたが、インバーテッドダーリントンの場合はVBEだけで動作が可能です。

インバーテッドダーリントンの動作電圧

欠点としては発振しやすいことが挙げられます。

インバーテッドダーリントン接続は、負帰還を形成しています。

下図のように入力電圧:VB1が低下すると、Q1のVBEが開くためコレクタ電流が増加し、VB2が上昇します。
VB2が上昇するとQ2のVBEが開くためQ2のコレクタ電流が増加し、Q2のコレクタ電圧=Q1のエミッタ電圧:VE1が下がります。
VE1が下がるとQ1のVBEが低下し、VB2は低下するという動きになります。

インバーテッドダーリントンの負帰還

低周波領域ではこのように負帰還となっているため発振しませんが、高周波領域ではNPNトランジスタのベース-コレクタ間寄生容量によって、正帰還(フィードフォワード)が形成されます。

インバーテッドダーリントンのフィードフォワードループ

このループはRHPゼロを形成します。

RHPゼロ(右半面ゼロ)とは

インバーテッドダーリントン単体で発振することはあまりありませんが、オペアンプやレギュレータ内の増幅段としてインバーテッドダーリントンが使われていると、このRHPゼロの影響で発振することがあります。

インバーテッドダーリントンの発振対策

寄生容量:Cpによってできる正帰還を、PNPトランジスタのベース-コレクタ間容量:C1を追加することで、全体として負帰還に戻し、発振を抑えることができます。

インバーテッドダーリントンの発振対策

C1とCpで2つのフィードフォワードができることで、打ち消すことができるのです。

この記事のキーワード

関連記事
エミッタ接地回路の特徴と使い方

エミッタ接地回路とは、バイポーラトランジスタのエミッタを入出力共通端子とし、ベースを入力、コレクタを出力として使う増幅回路です。 エミッタ共通回路、エミッタコモン回路とも呼ばれます。 本稿では、エミッタ接地回路の特徴や使い方、計算方法について解説していきます。 INDEX特徴動作…

能動負荷(アクティブ・ロード)とは?回路と特性について解…

能動負荷とは、電流が一定である非線形抵抗回路で、能動素子(トランジスタ)を使って構成されます。 アクティブ・ロードとも呼ばれます。 抵抗のような受動素子(パッシブ・ロード)との大きな違いは、インピーダンスが非常に大きい(理想的には無限大)であることです。 代表的な回路例としては定…

電流帰還バイアス回路の原理と設計計算の方法

電流帰還バイアス回路とは、エミッタ抵抗によって負帰還(フィードバック)を構成し、ベース電流(バイアス電流)を制御することができる増幅回路です。 エミッタ接地回路と比べ電圧利得は下がるが、周波数特性、ノイズ、歪みが改善し、温度変化によるばらつきも抑えられます。 エミッタ接地回路の特…

スイッチングレギュレータの位相補償のやり方と位相余裕の計…

スイッチングレギュレータ(DCDCコンバータ)の位相余裕を計算するのはそれほど難しくはありません。 伝達関数を使うので少し取っ付きにくいイメージがありますが、コツさえつかめば簡単です。 計算用のエクセルシートもご用意しましたので、数値を変えながらボーデ線図の変化を確認すればイメー…

A級増幅回路(A級アンプ)の動作原理

A級増幅回路とは、オペアンプなどの増幅回路に使われる出力段回路の1つの形式で、入力に対し出力がリニアに変化します。 歪が少ない出力が得られますが、効率が悪いため発熱が大きくなるというデメリットがあります。 この方式を使ったオーディオアンプは、A級アンプ、クラスAアンプと呼ばれます…