接地回路の種類と特徴の比較

接地回路とは、トランジスタの3つの端子のうちのどれかを共通端子として使う増幅回路です。
共通端子として使う端子によって回路名が決まります。
バイポーラトランジスタの場合は、

  • エミッタ接地
  • コレクタ接地
  • ベース接地

の3種類があり、MOSFETの場合も同様に

  • ソース接地
  • ドレイン接地
  • ゲート接地

の3種類があります。

バイポーラトランジスタの接地回路の特徴比較

種別 エミッタ接地 コレクタ接地 ベース接地
回路図 エミッタ接地 コレクタ接地 ベース接地
入力インピーダンス 低い 高い 低い
出力インピーダンス 高い 低い 高い
電圧増幅率 高い 約1倍 高い
電流増幅率 高い 高い 約1倍
出力の位相 反転 同相 同相
高周波特性

エミッタ接地

エミッタを共通端子とした増幅回路で、最もよく使われる接地回路です。
電圧、電流利得共に高く、入力インピーダンスが低い、出力インピーダンスが高いという特徴を持ちます。

ベース-コレクタ間の寄生容量にミラー効果が働くため、他の接地回路に比べ高周波側の周波数特性が悪くなります。

エミッタ接地回路の用途は、出力反転回路(インバータ)や、反転増幅回路などです。

エミッタ接地回路の動作原理と設計方法

コレクタ接地(エミッタフォロワ)

コレクタを共通端子とした回路で、増幅率はほぼ1倍です。
入力インピーダンスが高く、出力インピーダンスが低いため、インピーダンス変換回路(バッファ回路)として用いられます。

コレクタ接地(エミッタフォロワ)回路の動作原理と設計方法

ベース接地

ベースを共通端子とした増幅回路です。
電圧利得が高く、電流利得はほぼ1倍です。

エミッタ接地回路に縦積みしたカスコード回路としてよく使われ、エミッタ接地の高周波特性を改善させます。

MOSFETの接地回路の特徴比較

種別 ソース接地 ドレイン接地 ゲート接地
回路図 ソース接地 ドレイン接地 ゲート接地
入力インピーダンス 高い 高い 低い
出力インピーダンス 高い 低い 高い
電圧増幅率 高い 約1倍 高い
出力の位相 反転 同相 同相
高周波特性

ソース接地

ソースを共通端子とした増幅回路です。
エミッタ接地と同じ用途で使われます。

大きく違うのは、入力がゲートになっているため、バイポーラと違い入力インピーダンスが高いことです。

ミラー効果も同様に効きますが、反転回路として使った場合のオン⇒オフの切り替わりがバイポーラより速いのがメリットです。

ドレイン接地(ソースフォロワ)

ドレインを共通端子とした回路です。
コレクタ接地と同じ用途で使われ、電圧利得はほぼ1倍です。

出力(ソース)が入力に追従することから、ソースフォロワとも呼ばれます。

ゲート接地

ゲートを共通端子とした増幅回路です。
ベース接地と同じ用途で使われます。

動画で電子回路の基礎を学ぶ

Analogistaでは、電子回路の基礎から学習できるセミナー動画を作成しました。

電子の動きをアニメーションを使って解説したり、シミュレーションを使って回路動作を説明し、直感的に理解しやすい内容としています。

これから電子回路を学ぶ必要がある社会人の方、趣味で電子工作を始めたい方におすすめの講座になっています。

電子回路を動画で学ぶ

【内容】

  • 電気回路の基本法則
  • 回路シミュレータの使い方
  • コンデンサ・コイルとインピーダンス
  • フィルタ回路
  • 半導体部品の基礎
  • オペアンプの基礎
関連記事
A級、B級、C級、D級アンプの違い

A級~D級アンプの違いをまとめました。 クラス 回路図 効率 歪み 用途 A級 ~50% ○ 一般増幅回路オーディオ B級 ~78% × 一般増幅回路オーディオ AB級 ~78% ○ 一般増幅回路オーディオ C級 ~90% × 高周波回路 D級 ~90% × オーディオ INDE…

C級アンプの回路図と動作

C級アンプとは、トランジスタを入力信号の半周期以下のサイクルで導通させる方式です。 そのため歪みが大きくなりますが、効率が良く、理論上の最大効率は90%に達します。 歪みが大きいためオーディオでは使われず、高周波回路で使用されます。 A級、B級、C級、D級アンプの違い INDEX…

カレントミラー回路の動作原理と設計計算の方法

カレントミラーとは、電流源で作った基準電流をコピー(複製)する回路です。 電流を鏡のように写すことからその名が付けられています。 本稿では、カレントミラーの原理と、ミラー電流の計算方法について解説します。 INDEXカレントミラーの原理出力電流を2倍にする方法1.並列接続する2.…

オペアンプを使った加算回路の使用例と動作原理

加算回路とは、足し算(加算)の演算ができる回路です。 オペアンプを使った加算回路では、複数のアナログ信号の足し算ができます。 本稿では加算回路の動作原理や特徴・用途について解説していきます。 INDEX加算回路の回路図動作原理反転加算回路非反転加算回路使用例、応用例 加算回路の回…

トランジスタの動作点とは?求め方、決め方を解説

トランジスタの動作点とは、ある入力バイアス条件におけるコレクタ-エミッタ間電圧:VCEと、コレクタ電流:ICで決まる点です。 VCE-IC特性と負荷線が交わる点が動作点になります。 本稿では、負荷線を用いた動作点の求め方と、エミッタ接地増幅回路の動作点の決め方について解説していき…