エミッタ接地回路の特徴と使い方

エミッタ接地

エミッタ接地回路とは、バイポーラトランジスタのエミッタを入出力共通端子とし、ベースを入力、コレクタを出力として使う増幅回路です。
エミッタ共通回路、エミッタコモン回路とも呼ばれます。

本稿では、エミッタ接地回路の特徴や使い方、計算方法について解説していきます。

特徴

エミッタ接地回路の入出力の特徴をまとめると以下のようになります。

入力インピーダンス 低い
出力インピーダンス 高い
電圧増幅率 高い
電流増幅率 高い
出力の位相 反転
高周波特性 悪い

用途は、入出力反転回路や増幅回路などです。

動作波形

エミッタ接地回路の基本的な使い方における動作をLTspiceによるシミュレーションを使って解説していきます。

出力反転回路

出力反転回路は次のように構成します。

エミッタ接地回路

R1とR2で閾値を決めることができます。
閾値:VTHは、

VTH = VBE × (R1 + R2) / R2

で計算できます。
動作波形は次のようになります。

出力反転動作波形

出力論理を反転させるだけでなく、オン・オフの制御や出力Hiレベルのレベルシフトなどにも使われます。

増幅回路

ベースに入力した、±10mVのサイン波を増幅する回路を考えます。

エミッタ接地増幅回路

入力信号のDCオフセットは0.7V、周波数は1kHzです。

エミッタ接地増幅波形

出力信号の振幅は±822mVとなっていますので、増幅率は82.2倍となります。
増幅率の計算方法は後述します。

増幅率の計算方法

エミッタ接地回路の増幅率の求め方について説明していきます。
増幅率を計算するためには、相互コンダクタンスについて理解する必要があるため、簡単に説明します。

相互コンダクタンス

相互コンダクタンスとは、入力の電圧変化量に対する出力の電流変化量の割合で定義されます。
したがって、相互コンダクタンス:Gmは以下の式で表されます。

相互コンダクタンス計算式

エミッタ接地回路の場合は、VBE電圧の変動量に対するコレクタ電流の変化量を考えます。
よって、VBE-IC特性の傾きがGmということになります。

VBE-IC特性

VBEが0.75V~0.8Vまで変動した場合、コレクタ電流は100mA増加します。
よってGmは、

Gm = 100mA / 50mV = 2

となります。
単位はA/V、またはS(ジーメンス)です。

増幅率の計算

相互コンダクタンスが分かると、電圧増幅率を計算することができます。

エミッタ接地回路 エミッタ接地増幅率計算

下図の回路で実際に増幅率を計算してみます。

エミッタ接地増幅回路

VINは0.7V±10mVのサイン波です。
まず、VBE=0.7V付近のVBE-IC特性を確認し、Gmを求めます。

VBE-IC特性

VBEが690mV~710mVの範囲の傾きから、Gm=0.82A/Vとなります。

よって、電圧増幅率は

Av = Gm × R1 = 0.82 × 100 = 82

となります。
動作波形を確認すると、入力の±10mVの振幅が82倍に増幅され、±0.82Vの振幅が出力されています。

エミッタ接地増幅回路動作波形

波形歪みの原因と対策

エミッタ接地回路の歪み

出力波形が歪む原因は、

  • 出力波形のピーク電圧がVCC電圧に達している
  • 出力波形のボトム電圧が飽和電圧に達している

ことが原因となります。
対策方法としては、

  1. 出力抵抗の抵抗値を調整する
  2. 入力のバイアス電圧を調整する

の2つがあります。
出力波形を歪ませずに設計する手順を説明していきます。

1.出力抵抗を決める

使用するトランジスタの電流定格以下となるように、出力抵抗:ROUTを決めます。
コレクタ電流の最大値は、IC = VCC / ROUTで計算できますので、これが定格以下となる必要があります。

今回使用する2SC4617の定格は150mAとなっていますので、ROUT=100Ωであれば問題ない値となります。

2.動作点、バイアス電圧を決める

できるだけ大きな出力振幅をとるためには、出力の動作点(中心値)を

( VCC + Vsat ) / 2

とします。
最大コレクタ電流:5V/100Ω=50mA時の飽和電圧は、データシートより最大400mVとなります。

したがって、動作点は、

( 5V + 0.4V ) / 2 = 2.7V

となります。
出力電圧が2.7Vとなるコレクタ電流は、

IC = ( 5V – 2.7V ) / 100Ω = 23mA

となります。

動作点でのコレクタ電流は、入力(ベース)のバイアス電圧で決まります。
IC=23mAとなるVBEは、VBE-IC特性より692mVとなります。

VBE-IC特性

コレクタ電流が4.6V / 100Ω = 46mAを超えると、コレクタ電圧が飽和電圧に達するため、コレクタ電流が46mA以下となるように入力電圧範囲が制限されます。

VBE-IC特性より、許容される入力電圧振幅は、716mV – 692mV = 24mV
よって、±24mVとなります。

この条件でシミュレーションした結果です。

エミッタ接地増幅波形

VINが大きいほどGmが大きくなるので、コレクタ電流のピークが若干鋭くなり、したがって出力電圧のボトム側のピークも鋭くなるため、正弦波の波形が少し崩れます。

VBE-IC特性の傾きが直線に近い領域のバイアス電圧で使ったり、入力電圧の振幅が小さければGmの変動幅が小さくなるため、出力の波形が保たれます。

電流帰還バイアス回路

スピーカー駆動用の1段目の増幅回路として、エミッタ接地の応用回路である「電流帰還バイアス回路」が良く用いられます。

電流帰還バイアス回路

エミッタ接地の増幅回路は、温度変化などによるhFEのばらつきの影響を大きく受けます。
これを改善するためにエミッタ側に抵抗を入れ、負帰還がかかるように構成します。

電流帰還バイアス回路の原理と設計計算の方法

この記事のキーワード

関連記事
C級アンプの回路図と動作

C級アンプとは、トランジスタを入力信号の半周期以下のサイクルで導通させる方式です。 そのため歪みが大きくなりますが、効率が良く、理論上の最大効率は90%に達します。 歪みが大きいためオーディオでは使われず、高周波回路で使用されます。 A級、B級、C級、D級アンプの違い INDEX…

カレントミラー回路の動作原理と設計計算の方法

カレントミラーとは、電流源で作った基準電流をコピー(複製)する回路です。 電流を鏡のように写すことからその名が付けられています。 本稿では、カレントミラーの原理と、ミラー電流の計算方法について解説します。 INDEXカレントミラーの原理出力電流を2倍にする方法1.並列接続する2.…

トライアックの動作原理と使い方

トライアックとは、ゲート電圧をトリガーとして順方向・逆方向どちらにも導通させることができる半導体スイッチです。 サイリスタを2つ逆方向に並列接続した構造で、直流だけでなく交流も扱えるようになっています。 ゼネラル・エレクトリック社が開発し、Triode AC Switchを略して…

接地回路の種類と特徴の比較

接地回路とは、トランジスタの3つの端子のうちのどれかを共通端子として使う増幅回路です。 共通端子として使う端子によって回路名が決まります。 バイポーラトランジスタの場合は、 エミッタ接地 コレクタ接地 ベース接地 の3種類があり、MOSFETの場合も同様に ソース接地 ドレイン接…

サイリスタの仕組みと使い方

サイリスタとは、ゲートに印加された電流をトリガーとしてアノードからカソード側へ電流を流す半導体素子です。 トランジスタと違い、一度ゲートへ電流が印加されるとゲート電流を遮断してもアノードからカソードへ電流が流れ続けるのが特徴です。 SCR(Silicon Controlled R…