電流帰還バイアス回路の原理と設計計算の方法

電流帰還バイアス回路とは、エミッタ抵抗によって負帰還(フィードバック)を構成し、ベース電流(バイアス電流)を制御することができる増幅回路です。
エミッタ接地回路と比べ電圧利得は下がるが、周波数特性、ノイズ、歪みが改善し、温度変化によるばらつきも抑えられます。

エミッタ接地回路の特徴と使い方

本稿では、電流帰還バイアス回路の動作原理と設計方法について解説します。

回路図構成

エミッタ接地回路のエミッタ側に抵抗を入れた形となります。
それだけだと増幅率が大きく低下してしまいますので、エミッタ抵抗と並列にコンデンサを入れます。

電流帰還バイアス回路

コンデンサによって、AC的にはエミッタがGNDショート状態に見えるので、高い増幅率が得られます。

動作原理

まず、DC特性(静特性)を考えます。

温度上昇すると、トランジスタのhFEは大きくなり、コレクタ電流が増加します。
しかし、エミッタ抵抗によりエミッタ電圧も大きくなり、VBEを小さくする方向に作用します。
結果、ベース電流が低下し、温度上昇によるコレクタ電流の変化が抑えられることになります。

つまり、エミッタ抵抗によって負帰還が働き、動作点を安定させることができるのです。

次に、AC特性を考えます。

CEはハイパスコンデンサとして働き、カットオフ周波数以上の帯域ではエミッタがGNDにショートされている状態となるため、エミッタ抵抗による負帰還が働かず高い増幅率が得られます。

カットオフ周波数:fcは、エミッタを出力と見た場合の出力インピーダンス:ZEOとCEで決まります。
(※ZEO << REとする)

カットオフ周波数

増幅率:Avは、

増幅率

で計算できます。

CEが無い場合の増幅率はコレクタ抵抗とエミッタ抵抗の比だけで決まり、

Av = RC / RE

となります。

増幅率計算

設計計算

実際に使う場合、エミッタ抵抗を分割し、その中点にコンデンサを接続します。

電流帰還バイアス回路

こうすることで、DC的な帰還量はRE1+RE2で決めることができ、AC的な増幅率はRE1で決めることができるため、帰還量を大きく取っても増幅率を下げなくてもよくなります。
また、RCとRE1で増幅率がほぼ決まるので、トランジスタのばらつきによる影響を抑えることができます。

増幅率が33倍を狙って回路を設計します。

入力振幅が最大±10mVとすると、出力振幅は±330mVとなります。
コレクタ電圧の上限、下限に余裕を持たせて、動作点は2Vとします。

VCCは5V、コレクタ抵抗:RCを10kΩとすると、コレクタ電流は、

IC = ( 5V – 2V ) / 10kΩ = 300uA

となります。

コレクタ電圧の下限は2V – 330mV = 1.67V
エミッタ抵抗の合計値はトランジスタが飽和しないように設定する必要があります。
エミッタ抵抗を1.53kΩとしているので、エミッタ電圧は、

VE = 300uA × 1.53kΩ = 459mV

となり、VCEは十分確保できています。

IC=300uAを出力するのに必要なVBEを、VBE-IC特性から確認すると、573mVであることが分かります。

VBE-IC特性

したがって、バイアス電圧は、459mV + 573mV = 1.032Vとする必要があります。

今回の設定では、ベース電流は数uA程度なので、数kΩオーダーの抵抗値を選べば、ベース電流の影響を無視してブリーダー抵抗:R1、R2の比だけでバイアス電圧を決めることができます。

バイアス電圧:VBは、

VB = VCC × R2 / ( R1 + R2 )

で計算できます。
R1=3.9kΩ、R2=1kΩを選定すると、VB=1.02Vとなります。

この回路でシミュレーションを行います。
入力信号は、±10mV、1kHzのサイン波です。

電流帰還バイアス回路動作波形

ほぼ設計通りの動作となっていることが確認できましたが、増幅率が25倍程度となっており、狙いより少し小さくなっています。
これは、トランジスタのベース-エミッタ間インピーダンスとRE1でエミッタの電圧が分圧されて減衰しているためです。

理想的にはVEの電圧振幅は入力と同じ±10mVとなりますが、上記波形では±7.8mVとなっています。

RE1の値が小さい(増幅率が高い)ほど、ベース-エミッタ間インピーダンスの影響が大きくなります。

周波数特性

前項で設計した電流帰還バイアス回路の周波数特性を確認します。

電流帰還バイアス回路の周波数特性

低周波側のカットオフ周波数(遮断周波数)は、CEとRE1で決まります。

また、CEとRE2はゼロを形成し、C1とR1とR2の合成抵抗によってポールが形成されます。
今回の場合、このポールとゼロはほぼ同じ周波数に形成されているため打ち消し合っています。

ポール、ゼロについて解説

高周波側のカットオフ周波数はトランジスタの内部寄生容量によって決まります。

この記事のキーワード

関連記事
接地回路の種類と特徴の比較

接地回路とは、トランジスタの3つの端子のうちのどれかを共通端子として使う増幅回路です。 共通端子として使う端子によって回路名が決まります。 バイポーラトランジスタの場合は、 エミッタ接地 コレクタ接地 ベース接地 の3種類があり、MOSFETの場合も同様に ソース接地 ドレイン接…

【逆トラ】トランジスタを逆接続することの問題点

逆トラとは、トランジスタを逆接続することです。 通常は逆接続は禁止されていますが、例外的に使用できる場合や、想定外の動作時に逆トラ動作になってしまうこともあります。 本稿では、トランジスタの逆接続時の動作と問題点について解説していきます。 INDEX逆接続時の動作逆接続時の問題点…

プッシュプル回路(トーテムポール出力)とは

プッシュプル回路とは、トランジスタを2つ使って交互に動作させることで増幅、またはスイッチングを行う回路です。 上下に重ねられたトランジスタがそれぞれ電流を流し出す/引き込む動作を行うことが、Push-Pull(押し出す-引き込む)の名前の由来です。 トランジスタが縦積みになってい…

C級アンプの回路図と動作

C級アンプとは、トランジスタを入力信号の半周期以下のサイクルで導通させる方式です。 そのため歪みが大きくなりますが、効率が良く、理論上の最大効率は90%に達します。 歪みが大きいためオーディオでは使われず、高周波回路で使用されます。 A級、B級、C級、D級アンプの違い INDEX…

カレントミラー回路の動作原理と設計計算の方法

カレントミラーとは、電流源で作った基準電流をコピー(複製)する回路です。 電流を鏡のように写すことからその名が付けられています。 本稿では、カレントミラーの原理と、ミラー電流の計算方法について解説します。 INDEXカレントミラーの原理出力電流を2倍にする方法1.並列接続する2.…