カレントミラー回路の動作原理と設計計算の方法

NPN PNPカレントミラー

カレントミラーとは、電流源で作った基準電流をコピー(複製)する回路です。
電流を鏡のように写すことからその名が付けられています。

本稿では、カレントミラーの原理と、ミラー電流の計算方法について解説します。

カレントミラーの原理

カレントミラーは、2つのトランジスタのベース同士をつないだ構成を取ります。
参照電流を入力する側のトランジスタはコレクタ-ベースをショートしてダイオード接続とします。

カレントミラー回路

ベース同士がショートされているので

カレントミラー計算式

が成り立ちます。
VTは熱電圧、Isatは飽和電流です。

2つのトランジスタが完全に等しければ飽和電流も同じ値になるので、コレクタ電流は、

ミラー電流

となり、参照電流と同じ電流がQ2に出力されることが分かります。

出力電流を2倍にする方法

ミラー電流を参照電流の2倍、又は任意の値にする方法は3つあります。

1.並列接続する

ミラーするトランジスタを2つにすることで、電流を2倍にすることができます。

カレントミラー並列回路

並列接続数を増やすことで、参照電流のn倍の電流を出力することができます。

2.サイズ比を変更する

IC設計で主に用いられる方法です。
飽和電流はエミッタ面積に比例するため、エミッタ面積が2倍の素子をミラー側に用いることで、参照電流の2倍の電流を出力することができます。

カレントミラー電流2倍

素子サイズを変更することで、任意の電流値を出力することができます。

3.エミッタ抵抗で調整する

ミラー側にエミッタ抵抗を挿入してミラー電流を調整します。

カレントミラー回路エミッタ抵抗

ベース電圧が等しくなることから、

カレントミラー電流計算

で所望のIC2にするためのエミッタ抵抗を計算することができます。
IC1=10uA、IC2=20uA、RE1=10kΩとする場合のRE2は、

RE2 = ( 1 / 20u ) × 26m × ln( 10u / 20u ) + ( 10u / 20u ) × 10k = 4.1kΩ

と計算できます。

誤差の原因

ミラーされた電流値は、参照電流に対しわずかに誤差が発生します。
誤差の原因には大きく2つあります。

1.ベース電流の影響

電流源から供給される参照電流の一部はベース電流として供給されるため、参照電流とミラー電流には2IBの電流差が発生します。

カレントミラーの誤差

後述しますが、ベース電流を補償して、誤差をなくす手法がいくつかあります。

2.アーリー効果の影響

バイポーラトランジスタは、VCEの電圧によってコレクタ電流が変化します。
したがって、入力側と出力側のVCEの差によってコレクタ電流のずれが発生します。

アーリー効果

MOSFETで構成したカレントミラーの場合も同様のことが起こります。
チャネル長変調効果によって、VDSが大きくなるほどドレイン電流が増加するためです。

こちらも後述しますが、アーリー効果やチャネル長変調効果を抑えて誤差をなくす手法があります。

カレントミラーの高精度化

前項で解説した電流誤差を小さくすることができる高精度カレントミラー回路について解説していきます。

1.ベース電流補償型カレントミラー

ベース電流を供給するためにトランジスタを1つ追加した回路です。

ベース電流補償型カレントミラー

これにより誤差は2IB / hFEに圧縮されます。
ただし、アーリー効果による誤差は発生します。

2.カスコードカレントミラー

カレントミラーを2段縦積みにした構成です。

カスコード型カレントミラー

Q1、Q2のコレクタ電圧が等しくなるため、アーリー効果が低減できますが、ベース電流による誤差は発生します。
MOSFETで構成した場合はチャネル長変調効果が低減できるため、かなり高精度化できます。

3.ウィルソンカレントミラー

下図がウィルソンカレントミラーです。

ウィルソンカレントミラー

ベース電流による誤差を無くすと共に、Q1のコレクタ電圧が2VBE、Q2がVBEとなるため、アーリー効果による誤差も抑えることができます。

4.高精度ウィルソンカレントミラー

ウィルソンカレントミラーを改良し、高精度化した回路です。

高精度ウィルソンカレントミラー

Q1とQ2のコレクタ電圧も一致させて、アーリー効果による影響もなくしています。

この記事のキーワード

関連記事
eFuseとは?

eFuseとは、過電流を検知するとMOSFETをオフして負荷を切断する半導体スイッチICです。 ポリスイッチなどの通常のフューズと置き換えが可能です。 通常のヒューズが負荷切断までに時間がかかるのに対し、eFuseは検知が速く、すぐに切断動作を行えるため、安全性が高いというメリッ…

サイリスタの仕組みと使い方

サイリスタとは、ゲートに印加された電流をトリガーとしてアノードからカソード側へ電流を流す半導体素子です。 トランジスタと違い、一度ゲートへ電流が印加されるとゲート電流を遮断してもアノードからカソードへ電流が流れ続けるのが特徴です。 SCR(Silicon Controlled R…

バイポーラトランジスタの仕組みと原理

バイポーラトランジスタとは、半導体のPN接合を利用したトランジスタです。 コレクタ、エミッタ、ベースの3端子で構成され、ベース-エミッタ間に一定以上の電圧を印加することでオンさせる(コレクタ-エミッタ間を導通させる)ことができます。 また、ベースに流し込んだ電流を増幅する、電流増…

ロードスイッチとは?用途や動作原理を解説

ロードスイッチとは、電源と負荷の間に挿入されるハイサイドスイッチで、負荷への電源の供給のオン/オフ切り替えを行う半導体スイッチです。 オン/オフ機能に加え、過電流保護、突入電流防止、逆流防止などの機能を搭載したロードスイッチICも複数のメーカーからリリースされています。 >>各メ…

ベース接地回路の特徴と用途

ベース接地回路とは、バイポーラトランジスタのベースを入出力共通端子とし、エミッタを入力、コレクタを出力として使う回路です。 電圧増幅率が高く、電流増幅作用がない(1倍)という特徴を持ちます。 ベース共通回路、ベースコモン回路とも呼ばれます。 INDEXベース接地回路の特徴ベース接…