サレンキー型2次フィルタの特性と設計計算

サレンキー型2次フィルタ

サレンキー(Sallen-Key)型フィルタとは、VCVS型(電圧制御電圧源型)アクティブフィルタを構成する方法です。

本稿では、サレンキー型の2次ローパスフィルタ、ハイパスフィルタの設計方法や特性について解説していきます。

2次ローパスフィルタ(LPF)

サレンキー型の2次ローパスフィルタはこのような回路です。

サレンキー型2次ローパスフィルタ

伝達関数、カットオフ周波数、Q値は以下の式で表されます。

サレンキー型2次フィルタ伝達関数
サレンキー型2次フィルタカットオフ周波数
サレンキー型2次フィルタQ値

設計計算

計算を簡単にするため、R1=R2=Rとすると、

サレンキー型フィルタ計算

となります。
カットオフ周波数fcに√C1を代入すると、

サレンキー型フィルタ計算

これより、C1、C2を求めると、

サレンキー型フィルタ計算

となり、カットオフ周波数とQ値を決めればC1、C2の値を計算できます。

例えば、R1=R2=10kΩ、Q値を1とすれば、

C1=31.8nF、C2=8.0nFと計算できます。

周波数特性

下図の回路で、R1=R2=10kΩ、カットオフ周波数=1kHzとして、Q値を振った場合の周波数特性をLTspiceで確認してみます。

サレンキー型ローパスフィルタシミュレーション回路 サレンキー型ローパスフィルタ周波数特性

減衰特性は-40dB/decadeとなっていることが分かります。

増幅する場合

先述の回路ではオペアンプがボルテージフォロワ型になっているため、増幅作用はありません。

ボルテージフォロワとは?オペアンプを使ったバッファ回路

下図のように非反転増幅型にすることで、増幅することができます。

サレンキー型ローパスフィルタ増幅回路

増幅率は、

増幅率

で計算できます。
下図の条件でシミューレーションを行うと、カットオフ周波数以下ではゲインが20dB(10倍)となっていることが分かります。

サレンキー増幅回路 サレンキー増幅回路周波数特性

2次ハイパスフィルタ(HPF)

サレンキー型の2次ハイパスフィルタはこのような回路です。

サレンキー型2次ハイパスフィルタ

伝達関数、カットオフ周波数、Q値は以下の式で表されます。

伝達関数、カットオフ周波数、Q値

設計計算

計算を簡単にするため、C1=C2=Cとすると、

サレンキー型フィルタ計算

となります。
カットオフ周波数fcに√R2を代入すると、

サレンキー型フィルタ計算

これより、R1、R2を求めると、

サレンキー型フィルタ計算

となり、カットオフ周波数とQ値を決めればR1、R2の値を計算できます。

例えば、C1=C2=10nF、Q値を1とすれば、

R1=8kΩ、R2=32kΩと計算できます。

周波数特性

下図の回路で、C1=C2=10nF、カットオフ周波数=1kHzとして、Q値を振った場合の周波数特性をLTspiceで確認してみます。

サレンキー型2次HPFシミュレーション回路
サレンキー型2次HPFシミュレーション

減衰特性は-40dB/decadeとなっていることが分かります。

増幅する場合

ローパスフィルタの場合と同様に、非反転増幅型にすることで増幅することができます。
下図の回路でシミュレーションを行います。

サレンキー型2次HPFシミュレーション回路

カットオフ周波数以上ではゲインが20dB(10倍)となっていることが分かります。

サレンキー増幅回路周波数特性
関連記事
差動増幅回路の動作原理

差動増幅回路とは、2つの入力の差電圧を増幅する回路です。 差動増幅器とも呼ばれます。 オペアンプを使った回路では、減算回路とも言われます。 本稿では、トランジスタを使った差動増幅回路とオペアンプを使った回路について、わかりやすく解説していきます。 INDEXトランジスタを使った差…

スロープ補償とは?DCDCコンバータのサブハーモニック発…

スロープ補償とは、電流モード制御のDCDCコンバータにおいて、オンDUTYが50%以上の条件で発生する低調波発振(サブハーモニック発振)を抑えるために、電流センス信号に一定の傾きのスロープを足し込むことを指します。 INDEXサブハーモニック発振は何故起こるのかスロープ補償の原理…

接地回路の種類と特徴の比較

接地回路とは、トランジスタの3つの端子のうちのどれかを共通端子として使う増幅回路です。 共通端子として使う端子によって回路名が決まります。 バイポーラトランジスタの場合は、 エミッタ接地 コレクタ接地 ベース接地 の3種類があり、MOSFETの場合も同様に ソース接地 ドレイン接…

C級アンプの回路図と動作

C級アンプとは、トランジスタを入力信号の半周期以下のサイクルで導通させる方式です。 そのため歪みが大きくなりますが、効率が良く、理論上の最大効率は90%に達します。 歪みが大きいためオーディオでは使われず、高周波回路で使用されます。 A級、B級、C級、D級アンプの違い INDEX…

能動負荷(アクティブ・ロード)とは?回路と特性について解…

能動負荷とは、電流が一定である非線形抵抗回路で、能動素子(トランジスタ)を使って構成されます。 アクティブ・ロードとも呼ばれます。 抵抗のような受動素子(パッシブ・ロード)との大きな違いは、インピーダンスが非常に大きい(理想的には無限大)であることです。 代表的な回路例としては定…