RHPゼロ(右半面ゼロ)とは

RHPゼロ

RHPゼロは、20dB/decadeでゲインが上昇し、位相を90°遅らせます。
RHPはRight Half Planeの略で、右半面ゼロとも呼ばれます。

RHPゼロを複素平面で表すと、右側半面にプロットされます。

RHPゼロが発生する回路

RHPゼロが発生する代表的な回路として、

  • 昇圧DCDCコンバータ
  • ミラー補償を行ったLDO

が挙げられます。

昇圧DCDCコンバータ

出力電圧が上昇すると、フィードバック制御によりオンDUTYを下げて電圧を下げようとします。
オフサイクルが長くなり、コイル電流が減少することで電圧が安定します。

しかし、過渡的には、コイル電流はすぐには減少せず、オフサイクルが長くなるため、出力側へ転送される電荷量は増加し、出力電圧は上昇します。
つまり、高周波領域では正帰還になっていることになります。

昇圧RHPゼロ

これが昇圧DCDCコンバータでRHPゼロが発生する原理です。
同様に、SEPICでもRHPゼロが発生します。

ミラー補償を行ったLDO

LDO(シリーズレギュレータ)では、ミラー補償を使った位相補償が行われることがあります。
ミラー効果によりコンデンサ容量を見かけ上大きくし、低周波にポールを生成することができますが、高周波では入力から出力向きの電流経路ができてしまいます。

この経路を通るループは正帰還になってしまうので、RHPゼロが生成されます。

LDOミラー補償

位相補償が困難に

RHPゼロはゲインが上昇し、位相が遅れるという特性上、位相補償を非常に困難にします。

基本的にはRHPゼロの1/10の周波数にクロスオーバー周波数を設定し、RHPゼロの影響を受ける前にゲインを0dB以下にしておく必要があります。
そのため、レギュレータの帯域が狭くなってしまい、応答性が悪くなるという問題が起こりやすくなります。

動画で電子回路の基礎を学ぶ

Analogistaでは、電子回路の基礎から学習できるセミナー動画を作成しました。

電子の動きをアニメーションを使って解説したり、シミュレーションを使って回路動作を説明し、直感的に理解しやすい内容としています。

これから電子回路を学ぶ必要がある社会人の方、趣味で電子工作を始めたい方におすすめの講座になっています。

電子回路を動画で学ぶ

【内容】

  • 電気回路の基本法則
  • 回路シミュレータの使い方
  • コンデンサ・コイルとインピーダンス
  • フィルタ回路
  • 半導体部品の基礎
  • オペアンプの基礎
関連記事
レギュレータやFETスイッチの逆電圧保護の方法と注意点

レギュレータやFETスイッチなどに逆電圧が掛かると、逆流電流によってボディダイオードが破壊されてしまう場合があるため対策が必要です。 また、出力側から入力側への回り込みによるシステムの不具合が起こる可能性もあるため、逆流防止の必要もあります。 逆電圧が発生するシチュエーションとし…

過電流保護の種類と動作原理

レギュレータやパワースイッチなどの出力が短絡した際の保護として、過電流保護回路が搭載されています。 過電流保護回路の仕組みは、電流制限値を設定し、それ以上の電流が流れないようにすることでデバイスの破壊を防ぐようになっています。 ヒューズと違い、過負荷状態が解除されれば正常状態に復…

チャージポンプの仕組み、動作原理を回路図とシミュレーショ…

チャージポンプとは、コンデンサとダイオード(スイッチ)を組み合わせて出力電圧を昇圧する回路で、DCDCコンバータの一種です。 充電されたコンデンサの下端電圧の上げ下げを繰り返すことで、ダイオードのカソード側に入力電圧より高い電圧を出力することができます。 チャージポンプの動作原理…

オートディスチャージ機能とは?原理と回路設計方法を解説

オートディスチャージ機能とは、レギュレータやロードスイッチがオフした時に出力コンデンサの電荷を放電する機能です。 「放電シャント」という呼び方をしているメーカーもあります。 オートディスチャージの目的はオフシーケンスの遵守です。 シーケンサーでレギュレータをオフしたとしても、出力…

SEPICの動作原理と設計方法

SEPICとは、Single Ended Primary Inductor Converterの略で、スイッチングMOSFET1つとコイル2つで構成される昇降圧可能なスイッチングレギュレータの方式の1つです。 MOSFETを4つ使うHブリッジ型の昇降圧コンバータと比べ制御が簡単で…