カットオフ周波数の求め方

カットオフ周波数とは、フィルタ回路において入力信号がそのまま通過する帯域と、減衰される帯域の境目の周波数のことで、ゲインが3dB下がった周波数で定義されます。
カットオフ周波数は、遮断周波数とも呼ばれます。

カットオフ周波数の計算方法

RCフィルタ、LCフィルタのカットオフ周波数の計算式、周波数特性について解説していきます。

RCフィルタ(一次遅れ系)

RCフィルタのカットオフ周波数:fcは次式で計算できます。

RCカットオフ周波数計算式

実際の回路を例に挙げカットオフ周波数を計算してみます。

RCローパスフィルタ回路

R=1kΩ、C=1uFのローパスフィルタを考えます。

RCローパスフィルタ

カットオフ周波数は、

fc = 1 / (2π × 1k ×1u) = 159Hz

と計算できます。
この回路の周波数特性は以下のようになります。

RCローパスフィルタ周波数特性

カットオフ周波数でゲインが3dB低下していることが分かります。
位相はカットオフ周波数で45°遅れ、全体では90°遅れます。

RCハイパスフィルタ回路

R=1kΩ、C=1uFのハイパスフィルタを考えます。

RCハイパスフィルタ

カットオフ周波数はローパスフィルタと同様で159Hzとなります。
この回路の周波数特性は以下のようになります。

RCハイパスフィルタ周波数特性

ゲインが-3dBになる周波数がカットオフ周波数です。
位相はカットオフ周波数で45°進み、全体では90°進みます。

RLフィルタ(一次遅れ系)

RLフィルタのカットオフ周波数:fcは次式で計算できます。

RLフィルタカットオフ周波数計算

実際の回路を例に挙げカットオフ周波数を計算してみます。

RLローパスフィルタ

R=10Ω、L=100uHのローパスフィルタを考えます。

RLローパスフィルタ回路

カットオフ周波数は、

fc = 10 / (2π × 100u) = 15.9kHz

と計算できます。
この回路の周波数特性は以下のようになります。

RLローパスフィルタ周波数特性

カットオフ周波数でゲインが3dB低下していることが分かります。
位相はカットオフ周波数で45°遅れ、全体では90°遅れます。

RLハイパスフィルタ回路

R=10Ω、L=100uHのハイパスフィルタを考えます。

RLハイパスフィルタ

カットオフ周波数はローパスフィルタと同様で15.9kHzとなります。
この回路の周波数特性は以下のようになります。

RLハイパスフィルタ周波数特性

ゲインが-3dBになる周波数がカットオフ周波数です。
位相はカットオフ周波数で45°進み、全体では90°進みます。

LCフィルタ(二次遅れ系)

LCフィルタのカットオフ周波数は、LCの共振周波数で決まります。
カットオフ周波数:fcは次式で計算できます。

LCフィルタのカットオフ周波数計算

実際の回路を例に挙げカットオフ周波数を計算してみます。

LCローパスフィルタ

L=100uH、C=100uFのLCフィルタを考えます。
理想条件のLCフィルタの場合、共振周波数でのゲインのピークが無限大になってしまうため、コイルの等価直列抵抗として100mΩを想定します。

LCローパスフィルタ

カットオフ周波数は、

fc = 1 / (2π × √(100u ×100u) ) = 1.59kHz

となります。
この回路の周波数特性は以下のようになります。

LCローパスフィルタ周波数特性

カットオフ周波数でゲインの盛り上がり(ピーク)が発生します。
Rの値が大きいほど、ピークが低くなり、ゲインの低下の傾きが緩くなります。

カットオフ周波数で位相が90°遅れ、全体では180°遅れます。

LCハイパスフィルタ

L=100uH、C=100uFのLCフィルタを考えます。
ローパスフィルタ同様、コイルの等価直列抵抗として100mΩを想定します。

LCハイパスフィルタ

カットオフ周波数は1.59kHzとなります。
この回路の周波数特性は以下のようになります。

LCハイパスフィルタ周波数特性

ローパスフィルタ同様、カットオフ周波数でピークが発生し、Rの値が大きいほどピークが低くなり、ゲインの傾きが緩くなります。

低周波領域では、RとLがハイパスフィルタとして働いています。
このRLハイパスフィルタのカットオフ周波数は、

fc = 100m / (2π × 100u) = 159Hz

となり、低域で位相が戻ってきているのはこのRLフィルタの影響です。

動画で電子回路の基礎を学ぶ

Analogistaでは、電子回路の基礎から学習できるセミナー動画を作成しました。

電子の動きをアニメーションを使って解説したり、シミュレーションを使って回路動作を説明し、直感的に理解しやすい内容としています。

これから電子回路を学ぶ必要がある社会人の方、趣味で電子工作を始めたい方におすすめの講座になっています。

電子回路を動画で学ぶ

【内容】

  • 電気回路の基本法則
  • 回路シミュレータの使い方
  • コンデンサ・コイルとインピーダンス
  • フィルタ回路
  • 半導体部品の基礎
  • オペアンプの基礎
関連記事
LCフィルタの設計方法

LCフィルタとは、コイルとコンデンサを組み合わせて任意の周波数帯域の信号を遮断したり通過させたりする回路です。 LとCの2つのリアクタンスを持った2次フィルタなので、1次フィルタであるRCフィルタよりシャープな特性が得られます。 本稿では、LCフィルタの設計計算、部品定数の選定方…

カップリングコンデンサの仕組みと役割

カップリングコンデンサとは、直流を通さず、交流だけを通過させ取り出す目的で使われるコンデンサです。 入力と出力の間に直列に挿入して使われます。 日本語で「結合コンデンサ」と呼ばれる場合もあります。 INDEXカップリングコンデンサを使用する目的カップリングコンデンサの仕組みと原理…

アクティブフィルターとは?特徴とメリットとデメリットを解…

アクティブフィルタとは、オペアンプを使ったフィルタ回路です。 パッシブフィルタと違い、フィルタに様々な特性を持たせることができます。 本稿では、アクティブフィルタとパッシブフィルタの違いと、アクティブフィルタの種類について解説していきます。 INDEXアクティブフィルタとパッシブ…

コンデンサの種類と特徴

コンデンサの種類と特徴をまとめました。 種類 容量 極性 周波数特性 ESR セラミックコンデンサ 0.1pF~100μF なし ○ ○ タンタルコンデンサ 0.1μF~1000μF あり △ △ フィルムコンデンサ 1nF~100μF なし ○ ○ アルミ電解コンデンサ 1μF…

電気回路におけるコイルの動作、役割

電気回路設計を学ぶ上でコイル(インダクタ)の動作は理解が難しいものの1つです。 本稿では、理論的な部分はあまり語らず、回路動作としてコイルがどのような働きをするかという部分に絞ってわかりやすく解説していきます。 INDEXコイルの特徴、特性電流・電圧特性方形波を印加した場合の挙動…